|
|
|||
|
||||
OverviewThe book introduces new techniques that imply rigorous lower bounds on the com plexity of some number-theoretic and cryptographic problems. It also establishes certain attractive pseudorandom properties of various cryptographic primitives. These methods and techniques are based on bounds of character sums and num bers of solutions of some polynomial equations over finite fields and residue rings. Other number theoretic techniques such as sieve methods and lattice reduction algorithms are used as well. The book also contains a number of open problems and proposals for further research. The emphasis is on obtaining unconditional rigorously proved statements. The bright side of this approach is that the results do not depend on any assumptions or conjectures. On the downside, the results are much weaker than those which are widely believed to be true. We obtain several lower bounds, exponential in terms of logp, on the degrees and orders of o polynomials; o algebraic functions; o Boolean functions; o linear recurrence sequences; coinciding with values of the discrete logarithm modulo a prime p at sufficiently many points (the number of points can be as small as pI/2+O:). These functions are considered over the residue ring modulo p and over the residue ring modulo an arbitrary divisor d of p - 1. The case of d = 2 is of special interest since it corresponds to the representation of the rightmost bit of the discrete logarithm and defines whether the argument is a quadratic residue. Full Product DetailsAuthor: Igor ShparlinskiPublisher: Birkhauser Verlag AG Imprint: Birkhauser Verlag AG Edition: Softcover reprint of the original 1st ed. 2003 Volume: 22 Dimensions: Width: 15.50cm , Height: 2.20cm , Length: 23.50cm Weight: 0.652kg ISBN: 9783034894159ISBN 10: 3034894155 Pages: 414 Publication Date: 03 October 2013 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand We will order this item for you from a manufactured on demand supplier. Table of ContentsReviewsFrom the reviews: Igor Shparlinski is a very prolific mathematician and computer scientist ... . The book is written at a very high level, suitable for graduate students and researchers in computer science and mathematics. ... book has a unique perspective, and is not really comparable to other books in the area. ... book contains many deep results, and the mathematically-sophisticated reader can find much that is novel. ... this is an impressive work that will be of significant interest to researchers in cryptography and algorithmic number theory. (Jeffrey Shallit, SIGACT News, Vol. 41 (3), September, 2010) From the reviews: “Igor Shparlinski is a very prolific mathematician and computer scientist … . The book is written at a very high level, suitable for graduate students and researchers in computer science and mathematics. … book has a unique perspective, and is not really comparable to other books in the area. … book contains many deep results, and the mathematically-sophisticated reader can find much that is novel. … this is an impressive work that will be of significant interest to researchers in cryptography and algorithmic number theory.” (Jeffrey Shallit, SIGACT News, Vol. 41 (3), September, 2010) From the reviews: Igor Shparlinski is a very prolific mathematician and computer scientist ... . The book is written at a very high level, suitable for graduate students and researchers in computer science and mathematics. ... book has a unique perspective, and is not really comparable to other books in the area. ... book contains many deep results, and the mathematically-sophisticated reader can find much that is novel. ... this is an impressive work that will be of significant interest to researchers in cryptography and algorithmic number theory. (Jeffrey Shallit, SIGACT News, Vol. 41 (3), September, 2010) Author InformationTab Content 6Author Website:Countries AvailableAll regions |