|
|
|||
|
||||
OverviewPresents a systematic study of the common zeros of polynomials in several variables which are related to higher dimensional quadrature. The author uses a new approach which is based on the recent development of orthogonal polynomials in several variables and differs significantly from the previous ones based on algebraic ideal theory. Featuring a great deal of new work, new theorems and, in many cases, new proofs, this self-contained work will be of great interest to researchers in numerical analysis, the theory of orthogonal polynomials and related subjects. Full Product DetailsAuthor: Yuan Xu , David JerisonPublisher: Taylor & Francis Ltd Imprint: CRC Press Volume: 312 Dimensions: Width: 17.40cm , Height: 0.90cm , Length: 24.60cm Weight: 0.244kg ISBN: 9780582246706ISBN 10: 0582246709 Pages: 134 Publication Date: 10 October 1994 Audience: Professional and scholarly , Professional and scholarly , Professional & Vocational , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsPreface -- 1. Introduction -- 1.1 Review of the theory in one variable -- 1.2 Background to the theory in several variables -- 1.3 Outline of the content -- 2. Preliminaries and Lemmas -- 2.1 Orthogonal polynomials in several variables -- 2.2 Centrally symmetric linear functional -- 2.1 Lemmas -- 3. Motivations -- 3.1 Zeros for a special functional -- 3.2 Necessary conditions for the existence of minimal cubature formula -- 3.3 Definitions -- 4. Common Zeros of Polynomials in Several Variables: First Case -- 4.1 Characterization of zeros -- 4.2 A Christoffel-Darboux formula -- 4.3 Lagrange interpolation -- 4.4 Cubature formula of degree 2n — 1 -- 5. Moller’s Lower Bound for Cubature Formula -- 5.1 The first lower bound -- 5.2 Moller’s first lower bound -- 5.3 Cubature formulae attaining the lower bound -- 5.4 Moller’s second lower bound -- 6. Examples -- 6.1 Preliminaries -- 6.2 Examples: Chebyshev weight function -- 6.3 Examples: product weight function -- 7. Common Zeros of Polynomials in Several Variables: General Case . 85 -- 7.1 Characterization of zeros 86 -- 7.2 Modified Christoffel-Darboux formula 93 -- 7.3 Cubature formula of degree 2n — 1 96 -- 8. Cubature Formulae of Even Degree99 -- 8.1 Preliminaries 99 -- 8.2 Characterization 101 -- 8.3 Example 105 -- 9. Final Discussions 108 -- 9.1 Cubature formula of degree 2n — s 108 -- 9.2 Construction of cubature formula, afterthoughts 112 -- References.ReviewsAuthor InformationUniversity of Oregon, USA. Tab Content 6Author Website:Countries AvailableAll regions |