|
|
|||
|
||||
OverviewThis book discusses theoretical and experimental advances in metamaterial structures, which are of fundamental importance to many applications in microwave and optical-wave physics and materials science. Metamaterial structures exhibit time-reversal and space-inversion symmetry breaking due to the effects of magnetism and chirality. The book addresses the characteristic properties of various symmetry breaking processes by studying field-matter interaction with use of conventional electromagnetic waves and novel types of engineered fields: twisted-photon fields, toroidal fields, and magnetoelectric fields. In a system with a combined effect of simultaneous breaking of space and time inversion symmetries, one observes the magnetochiral effect. Another similar phenomenon featuring space-time inversion symmetries is related to use of magnetoelectric materials. Cross-coupling of the electric and magnetic components in these material structures, leading to the appearance of new magnetic modes with an electric excitation channel – electromagnons and skyrmions – has resulted in a wealth of strong optical effects such as directional dichroism, magnetochiral dichroism, and rotatory power of the fields. This book contains multifaceted contributions from international leading experts and covers the essential aspects of symmetry-breaking effects, including theory, modeling and design, proven and potential applications in practical devices, fabrication, characterization and measurement. It is ideally suited as an introduction and basic reference work for researchers and graduate students entering this field. Full Product DetailsAuthor: Eugene KamenetskiiPublisher: Springer Nature Switzerland AG Imprint: Springer Nature Switzerland AG Edition: 1st ed. 2021 Volume: 138 Weight: 1.051kg ISBN: 9783030628437ISBN 10: 3030628434 Pages: 575 Publication Date: 28 March 2021 Audience: College/higher education , Postgraduate, Research & Scholarly Format: Hardback Publisher's Status: Active Availability: Manufactured on demand We will order this item for you from a manufactured on demand supplier. Table of ContentsReviewsAuthor InformationDr. Eugene O. Kamenetskii received his PhD in Physics and Mathematics from the Electrical Engineering Institute, St. Petersburg, Russia in 1986. He is presently leads the Microwave Magnetic Laboratory at the Ben Gurion University in Negev, Israel. He has authored or co-authored more than 170 peer-reviewed journal and conference papers and is a co-editor of the book ""Fano Resonances in Optics and Microwaves: Physics and Application"", published by Springer in 2018. Additionally, he is Fellow of the Electromagnetics Academy (USA) since 2007. His fields of scientific interest are magnetic waves and oscillations, spectral theory of artificial atomic structures, metamaterials for microwave and optics applications, microwave microscopy, and microwave biosensing. Tab Content 6Author Website:Countries AvailableAll regions |