|
|
|||
|
||||
OverviewThis book is about the logic of Boolean equations. Such equations were central in the ""algebra of logic"" created in 1847 by Boole [12, 13] and devel oped by others, notably Schroder [178], in the remainder of the nineteenth century. Boolean equations are also the language by which digital circuits are described today. Logicians in the twentieth century have abandoned Boole's equation based logic in favor of the more powerful predicate calculus. As a result, digital engineers-and others who use Boole's language routinely-remain largely unaware of its utility as a medium for reasoning. The aim of this book, accordingly, is to is to present a systematic outline of the logic of Boolean equations, in the hope that Boole's methods may prove useful in solving present-day problems. Two Logical Languages Logic seeks to reduce reasoning to calculation. Two main languages have been developed to achieve that object: Boole's ""algebra of logic"" and the predicate calculus. Boole's approach was to represent classes (e. g. , happy creatures, things productive of pleasure) by symbols and to represent logical statements as equations to be solved. His formulation proved inadequate, however, to represent ordinary discourse. A number of nineteenth-century logicians, including Jevons [94], Poretsky [159], Schroder [178], Venn [210], and Whitehead [212, 213], sought an improved formulation based on ex tensions or modifications of Boole's algebra. These efforts met with only limited success. Full Product DetailsAuthor: Frank Markham BrownPublisher: Springer Imprint: Springer Edition: 1990 ed. Dimensions: Width: 15.50cm , Height: 1.70cm , Length: 23.50cm Weight: 1.310kg ISBN: 9780792391210ISBN 10: 0792391217 Pages: 276 Publication Date: 01 August 1990 Audience: College/higher education , Professional and scholarly , Postgraduate, Research & Scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: In Print This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of Contents1 Fundamental Concepts.- 1.1 Formulas.- 1.2 Propositions and Predicates.- 1.3 Sets.- 1.4 Operations on Sets.- 1.5 Partitions.- 1.6 Relations.- 1.7 Functions.- 1.8 Operations and Algebraic Systems.- 2 Boolean Algebras.- 2.1 Postulates for a Boolean Algebra.- 2.2 Examples of Boolean Algebras.- 2.3 The Stone Representation Theorem.- 2.4 The Inclusion-Relation.- 2.5 Some Useful Properties.- 2.6 n-Variable Boolean Formulas.- 2.7 n-Variable Boolean Functions.- 2.8 Boole’s Expansion Theorem.- 2.9 The Minterm Canonical Form.- 2.10 The Löwenheim-Müller Verification Theorem.- 2.11 Switching Functions.- 2.12 Incompletely-Specified Boolean Functions.- 2.13 Boolean Algebras of Boolean Functions.- 2.14 Orthonormal Expansions.- 2.15 Boolean Quotient.- 2.16 The Boolean Derivative.- 2.17 Recursive Definition of Boolean Functions.- 2.18 What Good are “Big” Boolean Algebras?.- 3 The Blake Canonical Form.- 3.1 Definitions and Terminology.- 3.2 Syllogistic & Blake Canonical Formulas.- 3.3 Generation of BCF(f).- 3.4 Exhaustion of Implicants.- 3.5 Iterated Consensus.- 3.6 Multiplication.- 4 Boolean Analysis.- 4.1 Review of Elementary Properties.- 4.2 Boolean Systems.- 4.3 Reduction.- 4.4 The Extended Verification Theorem.- 4.5 Poretsky’s Law of Forms.- 4.6 Boolean Constraints.- 4.7 Elimination.- 4.8 Eliminants.- 4.9 Rudundant Variables.- 4.10 Substitution.- 4.11 The Tautology Problem.- 5 Syllogistic Reasoning.- 5.1 The Principle of Assertion.- 5.2 Deduction by Consensus.- 5.3 Syllogistic Formulas.- 5.4 Clausal Form.- 5.5 Producing and Verifying Consequents.- 5.6 Class-Logic.- 5.7 Selective Deduction.- 5.8 Functional Relations.- 5.9 Dependent Sets of Functions.- 5.10 Sum-to-One Subsets.- 5.11 Irredundant Formulas.- 6 Solution of Boolean Equations.- 6.1 Particular Solutions andConsistency.- 6.2 General Solutions.- 6.3 Subsumptive General Solutions.- 6.4 Parametric General Solutions.- 7 Functional Deduction.- 7.1 Functionally Deducible Arguments.- 7.2 Eliminable and Determining Subsets.- 8 Boolean Identification.- 8.1 Parametric and Diagnostic Models.- 8.2 Adaptive Identification.- 9 Recursive Realizations of Combinational Circuits.- 9.1 The Design-Process.- 9.2 Specifications.- 9.3 Tabular Specifications.- 9.4 Strongly Combinational Solutions.- 9.5 Least-Cost Recursive Solutions.- 9.6 Constructing Recursive Solutions.- A Syllogistic Formulas.- A.1 Absorptive Formulas.- A.2 Syllogistic Formulas.- A.3 Prime Implicants.- A.4 The Blake Canonical Form.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |