Biochar-Based Nanocomposites for Contaminant Management: Synthesis, Contaminants Removal, and Environmental Sustainability

Author:   Disha Mishra ,  Rishikesh Singh ,  Puja Khare
Publisher:   Springer International Publishing AG
Edition:   2023 ed.
ISBN:  

9783031288753


Pages:   143
Publication Date:   19 July 2024
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $527.97 Quantity:  
Add to Cart

Share |

Biochar-Based Nanocomposites for Contaminant Management: Synthesis, Contaminants Removal, and Environmental Sustainability


Add your own review!

Overview

This book helps the readers get a holistic understanding of the emergence of biochar-nanocomposite research. The low and long-term exposure of persistent hazardous pollutants in environment is well known for damaging the water, soil, sediments, and living biota. Thus, it is a crucial step to eliminate these pollutants from environment regimes to prevent the on-site destruction or the transfer into the food chain. Biochar is a carbon-rich solid material generated through pyrolysis of biomass, and currently, it is covering the hotspot in environmental management of pollutants.  It is being utilized for the efficient immobilization and sorption of organic pollutants, heavy metals, dyes, improvement of soil redox conditions, aggregate stabilization, photocatalytic degradation, and for carbon sequestration. The fascinating properties like surface area, porous structures, functional groups, and mineral components turn it into suitable candidate for the removal of various class of pollutants from environmental matrices. Different reactions like sorption, reduction, precipitation, solidification, and degradation are mainly responsible for the effective cleaning of xenobiotics from environment through biochar application. However, rapidly evolving contaminants in the environment have made the remediation more complex, expensive, and challenging. In view of these aspects, the modification of biochar through the doping of nanometals/metal oxides/surfactants/ or chemical entities will result in modified biochar with high surface area, more functional entities, improved physical, chemical, thermal, and mechanical characteristics with more adsorptive sites. Inclusion of these exclusive properties can be done through magnetic modification, impregnation of nanometals/ metal oxides/surfactants, amination, acid/base reactions, steam activation, etc. The resulted biochar-based nanocomposites have demonstrated a vital role in remediation of persistent organic pollutants, radionuclei, and heavy metals through the various interaction mechanisms like surface complexation, π–π interaction, electrostatic interaction, hydrogen bonding, Fenton process, and photocatalytic degradation. Currently, advanced research work has been carried out for the designing of modified composites of biochar to achieve maximum removal efficiency, reusability, biotoxicity, and sustainability. Hence, for selective removal of pollutants through designed biochar surface with the focused experimentation toward optimization of feedstocks, process variables, appropriate impregnation of nanomaterials, interaction with secondary pollutants, physical environment, longevity, and regeneration will definitely pave the way for safe and commercial application of biochar-based nanocomposites.

Full Product Details

Author:   Disha Mishra ,  Rishikesh Singh ,  Puja Khare
Publisher:   Springer International Publishing AG
Imprint:   Springer International Publishing AG
Edition:   2023 ed.
ISBN:  

9783031288753


ISBN 10:   3031288750
Pages:   143
Publication Date:   19 July 2024
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Reviews

Author Information

Dr. Disha Mishra has received her doctorate from CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India. Her research interest is synthesis of nano-bioformulation, nano-biocomposite preparation, biochar production, and its application for remediation of pollutants from soil, soil chemistry, and solid waste management. She is an emerging researcher and has published several research articles and book chapters in peer-reviewed journals. Dr. Mishra has 23 Scopus publications with 263 citations and a Scopus h-index 7.   Dr. Rishikesh Singh has completed his Ph.D. from Institute of Environment & Sustainable Development (IESD), Banaras Hindu University, Varanasi, India. He is a budding environmental scientist with his research interests in soil carbon dynamics, land-use change and management, waste management, environmental contaminants, biochar, and carbon sequestration. He has published several research and review articles, and is a reviewer of several international journals of Elsevier, Wiley, Taylor and Francis, Frontiers, PLoS, and Springer Nature groups. He has published six books in leading international publishers such as Elsevier, Springer Nature, Wiley and NOVA publishers. Dr. Singh has 56 Scopus publications with 886 citations and a Scopus h-index 18.      Dr. Puja Khare is working as a principal scientist in the Plant Production and Protection Division at CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India. She has obtained her doctorate from Dayalbagh Educational Institute (DEI), Agra, India. She has research experience of more than 25 years and published more than 100 peer-reviewed publications. She is a member of various national and international scientific bodies. Apart from this, Dr. Khare has received many prestigious awards and honors for her contribution in the growth of science. Her research interests include nanoformulation for agricultural purposes, application of biochar on problematic soils, abiotic stress and medicinal plants, and environmental chemistry. Her research on the production of biochar from waste and its application as soil amendment is widely recognized

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

lgn

al

Shopping Cart
Your cart is empty
Shopping cart
Mailing List