|
|
|||
|
||||
OverviewThe first coherent exposition of the theory of binary quadratic forms was given by Gauss in the Disqnisitiones Arithmeticae. During the nine teenth century, as the theory of ideals and the rudiments of algebraic number theory were developed, it became clear that this theory of bi nary quadratic forms, so elementary and computationally explicit, was indeed just a special case of a much more elega,nt and abstract theory which, unfortunately, is not computationally explicit. In recent years the original theory has been laid aside. Gauss's proofs, which involved brute force computations that can be done in what is essentially a two dimensional vector space, have been dropped in favor of n-dimensional arguments which prove the general theorems of algebraic number the ory. In consequence, this elegant, yet pleasantly simple, theory has been neglected even as some of its results have become extremely useful in certain computations. I find this neglect unfortunate, because binary quadraticforms have two distinct attractions. First, the subject involves explicit computa tion and many of the computer programs can be quite simple. The use of computers in experimenting with examples is both meaningful and enjoyable; one can actually discover interesting results by com puting examples, noticing patterns in the ""data,"" and then proving that the patterns result from the conclusion of some provable theorem. Full Product DetailsAuthor: Duncan A. BuellPublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: Softcover reprint of the original 1st ed. 1989 Dimensions: Width: 15.50cm , Height: 1.30cm , Length: 23.50cm Weight: 0.400kg ISBN: 9781461288701ISBN 10: 1461288703 Pages: 248 Publication Date: 26 September 2011 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand We will order this item for you from a manufactured on demand supplier. Table of Contents1 Elementary Concepts.- 2 Reduction of Positive Definite Forms.- 3 Indefinite Forms.- 3.1 Reduction, Cycles.- 3.2 Automorphs, Pell’s Equation.- 3.3 Continued Fractions and Indefinite Forms.- 4 The Class Group.- 4.1 Representation and Genera.- 4.2 Composition Algorithms.- 4.3 Generic Characters Revisited.- 4.4 Representation of Integers.- 5 Miscellaneous Facts.- 5.1 Class Number Computations.- 5.2 Extreme Cases and Asymptotic Results.- 6 Quadratic Number Fields.- 6.1 Basic Algebraic Definitions.- 6.2 Algebraic Numbers and Quadratic Fields.- 6.3 Ideals in Quadratic Fields.- 6.4 Binary Quadratic Forms and Classes of Ideals.- 6.5 History.- 7 Composition of Forms.- 7.1 Nonfundamental Discriminants.- 7.2 The General Problem of Composition.- 7.3 Composition in Different Orders.- 8 Miscellaneous Facts II.- 8.1 The Cohen-Lenstra Heuristics.- 8.2 Decomposing Class Groups.- 8.3 Specifying Subgroups of Class Groups.- 8.3.1 Congruence Conditions.- 8.3.2 Exact and Exotic Groups.- 9 The 2-Sylow Subgroup.- 9.1 Classical Results on the Pell Equation.- 9.2 Modern Results.- 9.3 Reciprocity Laws.- 9.4 Special References for Chapter 9.- 10 Factoring with Binary Quadratic Forms.- 10.1 Classical Methods.- 10.2 SQUFOF.- 10.3 CLASNO.- 10.4 SPAR.- 10.4.1 Pollard p — 1.- 10.4.2 SPAR.- 10.5 CFRAC.- 10.6 A General Analysis.- Appendix 1:Tables, Negative Discriminants.- Appendix 2:Tables, Positive Discriminants.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |