|
|
|||
|
||||
OverviewInhalts}bersicht: Einleitung. - Die allgemeine Klassenzahlformel. - Die arithmetische Struktur der Klassenzahlformel f}r reelle K|rper. - Die arithmetische Struktur der Relativklassenzahlformel f}r imagin{re K|rper. - Anhang: Relativklassenzahltafeln. - Literaturverzeichnis. Full Product DetailsAuthor: Helmut Hasse , J. MartinetPublisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Imprint: Springer-Verlag Berlin and Heidelberg GmbH & Co. K Edition: Softcover reprint of the original 1st ed. 1985 Dimensions: Width: 17.00cm , Height: 1.20cm , Length: 24.40cm Weight: 0.389kg ISBN: 9783642698873ISBN 10: 3642698875 Pages: 190 Publication Date: 13 February 2012 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: Manufactured on demand We will order this item for you from a manufactured on demand supplier. Language: German Table of ContentsI. Die allgemeine Klassenzahlformel.- 1. Abelsche Zahlkörper als Klassenkörper.- 2. Die analytische Klassenzahlformel.- 3. Produktformeln für die Führer und für die Gaußschen Summen.- 4. Berechnung der L-Reihen.- 5. Die arithmetische Klassenzahlformel.- 6. Vorläufige Bemerkungen über die arithmetische Struktur der beiden Klassenzahl-faktoren.- II. Die arithmetische Struktur der Klassenzahlformel für reelle Körper.- 7. Plan der Untersuchung.- 8. Die erste Umformungsart.- 9. Der Zahlfaktor gK.- 10. Einführung der Kreiseinheiten.- 11. Erste arithmetische Darstellung der Klassenzahl.- 12. Der Satz von Weber und seine Verallgemeinerung.- 13. Die verallgemeinerte Gruppenmatrix.- 14. Linearfaktorenzerlegung der verallgemeinerten Gruppendeterminante.- 15. Der Zahlfaktor cG.- 16. Die zweite Umformungsart.- 17. Zweite arithmetische Darstellung der Klassenzahl.- 18. Reelle zyklische biquadratische Zahlkörper.- III. Die arithmetische Struktur der Relativklassenzahlformel für imaginäre Körper.- 19. Klassenkörpertheoretischer Ganzzahligkeitsbeweis und arithmetische Deutung.- 20. Der Einheitenindex Q.- 21. Kriterium für Q = 1 oder 2 durch eine Kummer-Erzeugung.- 22. Kriterium für Q = 1 oder 2 durch Verzweigung und Klassenfrage.- 23. Beschreibung der Verzweigung durch die Charaktere.- 24. Kriterien für Q = 1 oder 2 durch Charaktere und Klassenfrage.- 25. Körpertypen mit Q = 1 und Körpertypen mit Q = 2.- 26. Imaginäre bizyklische biquadratische Zahlkörper.- 27. Vorbereitungen zum direkten Ganzzahligkeitsbeweis.- 28. Die Charaktere mit zusammengesetztem Führer.- 29. Seitenstück zum Gaußschen Lemma.- 30. Die Charaktere von 2-Potenzordnung mit zusammengesetztem Führer.- 31. Die Charaktere mit ungeradem Primzahlpotenzführer.- 32. Die Charaktere mit 2-Potenzführer.- 33. Direkter Ganzzahligkeitsbeweis.- 34. Der Satz von Weber und ein Seitenstück dazu.- 35. Bemerkungen über den Geschlechterfaktor.- 36. Teilbarkeit durch die Relativklassenzahl eines Teilkörpers.- 37. Imaginäre abelsche Zahlkörper mit ungerader Klassenzahl.- 38. Imaginäre zyklische Zahlkörper mit ungerader Klassenzahl.- Anhang: Relativklassenzahltafein.- Tafel I: Die Relativklassenzahlbeiträge der Charaktere.- 1. Primzahlpotenzführer.- 2. Zusammengesetzte Führer.- Hilfstafel: Die Werte der Grundcharaktere.- Tafel II: Die Relativklassenzahlen.- 1. Primzahlpotenzführer.- 2. Zusammengesetzte Führer.- Hilfstafel: Die Werte des Einheitenindex.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |