Bayesian Statistical Modeling with Stan, R, and Python

Author:   Kentaro Matsuura
Publisher:   Springer Verlag, Singapore
Edition:   1st ed. 2022
ISBN:  

9789811947575


Pages:   385
Publication Date:   25 January 2024
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $310.47 Quantity:  
Add to Cart

Share |

Bayesian Statistical Modeling with Stan, R, and Python


Add your own review!

Overview

This book provides a highly practical introduction to Bayesian statistical modeling with Stan, which has become the most popular probabilistic programming language. The book is divided into four parts. The first part reviews the theoretical background of modeling and Bayesian inference and presents a modeling workflow that makes modeling more engineering than art. The second part discusses the use of Stan, CmdStanR, and CmdStanPy from the very beginning to basic regression analyses. The third part then introduces a number of probability distributions, nonlinear models, and hierarchical (multilevel) models, which are essential to mastering statistical modeling. It also describes a wide range of frequently used modeling techniques, such as censoring, outliers, missing data, speed-up, and parameter constraints, and discusses how to lead convergence of MCMC. Lastly, the fourth part examines advanced topics for real-world data: longitudinal data analysis, state space models, spatial data analysis, Gaussian processes, Bayesian optimization, dimensionality reduction, model selection, and information criteria, demonstrating that Stan can solve any one of these problems in as little as 30 lines. Using numerous easy-to-understand examples, the book explains key concepts, which continue to be useful when using future versions of Stan and when using other statistical modeling tools. The examples do not require domain knowledge and can be generalized to many fields. The book presents full explanations of code and math formulas, enabling readers to extend models for their own problems. All the code and data are on GitHub.

Full Product Details

Author:   Kentaro Matsuura
Publisher:   Springer Verlag, Singapore
Imprint:   Springer Verlag, Singapore
Edition:   1st ed. 2022
Weight:   0.734kg
ISBN:  

9789811947575


ISBN 10:   9811947570
Pages:   385
Publication Date:   25 January 2024
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Reviews

Author Information

Kentaro Matsuura 

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

lgn

al

Shopping Cart
Your cart is empty
Shopping cart
Mailing List