|
|
|||
|
||||
OverviewThis book describes how Bayesian methods work. Aiming to demystify the approach, it explains how to parameterize and compare models while accounting for uncertainties in data, model parameters and model structures. Bayesian thinking is not difficult and can be used in virtually every kind of research. How exactly should data be used in modelling? The literature offers a bewildering variety of techniques (Bayesian calibration, data assimilation, Kalman filtering, model-data fusion, …). This book provides a short and easy guide to all these approaches and more. Written from a unifying Bayesian perspective, it reveals how these methods are related to one another. Basic notions from probability theory are introduced and executable R codes for modelling, data analysis and visualization are included to enhance the book’s practical use. The codes are also freely available online. This thoroughly revised second edition has separate chapters on risk analysis and decision theory. It also features an expanded text on machine learning with an introduction to natural language processing and calibration of neural networks using various datasets (including the famous iris and MNIST). Literature references have been updated and exercises with solutions have doubled in number. Full Product DetailsAuthor: Marcel van OijenPublisher: Springer International Publishing AG Imprint: Springer International Publishing AG Edition: Second Edition 2024 ISBN: 9783031660849ISBN 10: 3031660846 Pages: 265 Publication Date: 28 August 2024 Audience: Professional and scholarly , Professional & Vocational Format: Hardback Publisher's Status: Active Availability: Manufactured on demand We will order this item for you from a manufactured on demand supplier. Table of Contents- 1. Science and Uncertainty.- 2. Bayesian Inference.- 3. Assigning a Prior Distribution.- 4. Assigning a Likelihood Function.- 5. Deriving the Posterior Distribution.- 6. Markov Chain Monte Carlo Sampling (MCMC).- 7. Sampling from the Posterior Distribution by MCMC.- 8. MCMC and Multivariate Models.- 9. Bayesian Calibration and MCMC: Frequently Asked Questions.- 10. After the Calibration: Interpretation, Reporting, Visualisation.- 11. Model Ensembles: BMC and BMA.- 12. Discrepancy.- 13. Approximations to Bayes.- 14.Thirteen Ways to Fit a Straight Line.- 15. Gaussian Processes and Model Emulation.- 16. Graphical Modelling.- 17. Bayesian Hierarchical Modelling.- 18. Probabilistic Risk Analysis.- 19. Bayesian Decision Theory.- 20. Linear Modelling: LM, GLM, GAM and Mixed Models.- 21. Machine Learning.- 22. Time Series and Data Assimilation.- 23. Spatial Modelling and Scaling Error.- 24. Spatio-Temporal Modelling and Adaptive Sampling.- 25. What Next?.ReviewsAuthor InformationMarcel van Oijen studied mathematical biology at the University of Utrecht. He completed his PhD in plant disease epidemiology at Wageningen University, where he worked on modelling the impacts of environmental change on crops. He moved to the U.K. in 1999, becoming a Senior Scientist at the Natural Environment Research Council. There he focused on the use of Bayesian methods in the modelling of ecosystem services provided by grasslands, forests and agroforestry systems. He now works as an independent scientist and as such has written two books: Bayesian Compendium (first edition in 2020) and Probabilistic Risk Analysis and Bayesian Decision Theory (2022). Tab Content 6Author Website:Countries AvailableAll regions |