Autonomous Underwater Vehicles: Modeling, Control Design and Simulation

Author:   Sabiha Wadoo (New York Institute of Technology, Old Westbury, USA) ,  Pushkin Kachroo (University of Nevada, Las Vegas, USA)
Publisher:   Taylor & Francis Inc
ISBN:  

9781439818312


Pages:   165
Publication Date:   03 December 2010
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $368.00 Quantity:  
Add to Cart

Share |

Autonomous Underwater Vehicles: Modeling, Control Design and Simulation


Add your own review!

Overview

Underwater vehicles present some difficult and very particular control system design problems. These are often the result of nonlinear dynamics and uncertain models, as well as the presence of sometimes unforeseeable environmental disturbances that are difficult to measure or estimate. Autonomous Underwater Vehicles: Modeling, Control Design, and Simulation outlines a novel approach to help readers develop models to simulate feedback controllers for motion planning and design. The book combines useful information on both kinematic and dynamic nonlinear feedback control models, providing simulation results and other essential information, giving readers a truly unique and all-encompassing new perspective on design. Includes MATLAB(R) Simulations to Illustrate Concepts and Enhance Understanding Starting with an introductory overview, the book offers examples of underwater vehicle construction, exploring kinematic fundamentals, problem formulation, and controllability, among other key topics. Particularly valuable to researchers is the book's detailed coverage of mathematical analysis as it applies to controllability, motion planning, feedback, modeling, and other concepts involved in nonlinear control design. Throughout, the authors reinforce the implicit goal in underwater vehicle design--to stabilize and make the vehicle follow a trajectory precisely. Fundamentally nonlinear in nature, the dynamics of AUVs present a difficult control system design problem which cannot be easily accommodated by traditional linear design methodologies. The results presented here can be extended to obtain advanced control strategies and design schemes not only for autonomous underwater vehicles but also for other similar problems in the area of nonlinear control.

Full Product Details

Author:   Sabiha Wadoo (New York Institute of Technology, Old Westbury, USA) ,  Pushkin Kachroo (University of Nevada, Las Vegas, USA)
Publisher:   Taylor & Francis Inc
Imprint:   CRC Press Inc
Dimensions:   Width: 15.60cm , Height: 1.50cm , Length: 23.40cm
Weight:   0.362kg
ISBN:  

9781439818312


ISBN 10:   1439818312
Pages:   165
Publication Date:   03 December 2010
Audience:   College/higher education ,  General/trade ,  Tertiary & Higher Education ,  General
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Introduction. Problem Formulation and Examples. Mathematical Modeling and Controllability Analysis. Control Design Using the Kinematic Model. Control Design Using the Dynamic Model. Robust Feedback Control Design.

Reviews

Author Information

Sabiha Wadoo, Ph.D, received a BE degree in electrical engineering from the Regional Engineering College, Kashmir, India, in 2001, and an MS degree in electrical engineering, an MS degree in mathematics, and a Ph.D degree in electrical engineering from Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, in 2003, 2005, and 2007, respectively. Since 2007, she has been with the New York Institute of Technology, Old Westbury, New York, where she is an assistant professor with the Department of Electrical and Computer Engineering. Her research interests are in the areas of feedback control of nonlinear control systems, nonlinear control system abstraction, and feedback control of distributed parameter systems. Pushkin Kachroo, Ph.D, received a BTech degree in civil engineering from the Indian Institute of Technology, Bombay, India, in 1988, an MS degree in mechanical engineering from Rice University, Houston, Texas, in 1990, a Ph.D degree in mechanical engineering from the University of California, Berkeley, in 1993, and MS and Ph.D degrees in mathematics from Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, in 2004 and 2007, respectively. He is the director of the Transportation Research Center, Harry Reid Center for Environmental Studies, Las Vegas, Nevada, and a professor with the Department of Electrical and Computer Engineering, University of Nevada, Las Vegas.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

lgn

al

Shopping Cart
Your cart is empty
Shopping cart
Mailing List