Applications of Machine Learning and Deep Learning on Biological Data

Author:   Faheem Masoodi ,  Mohammad Quasim ,  Syed Bukhari ,  Sarvottam Dixit
Publisher:   Taylor & Francis Ltd
ISBN:  

9781032214375


Pages:   200
Publication Date:   13 March 2023
Format:   Hardback
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Our Price $231.00 Quantity:  
Add to Cart

Share |

Applications of Machine Learning and Deep Learning on Biological Data


Add your own review!

Overview

The automated learning of machines characterizes machine learning (ML). It focuses on making data-driven predictions using programmed algorithms. ML has several applications, including bioinformatics, which is a discipline of study and practice that deals with applying computational derivations to obtain biological data. It involves the collection, retrieval, storage, manipulation, and modeling of data for analysis or prediction made using customized software. Previously, comprehensive programming of bioinformatical algorithms was an extremely laborious task for such applications as predicting protein structures. Now, algorithms using ML and deep learning (DL) have increased the speed and efficacy of programming such algorithms. Applications of Machine Learning and Deep Learning on Biological Data is an examination of applying ML and DL to such areas as proteomics, genomics, microarrays, text mining, and systems biology. The key objective is to cover ML applications to biological science problems, focusing on problems related to bioinformatics. The book looks at cutting-edge research topics and methodologies in ML applied to the rapidly advancing discipline of bioinformatics. ML and DL applied to biological and neuroimaging data can open new frontiers for biomedical engineering, such as refining the understanding of complex diseases, including cancer and neurodegenerative and psychiatric disorders. Advances in this field could eventually lead to the development of precision medicine and automated diagnostic tools capable of tailoring medical treatments to individual lifestyles, variability, and the environment. Highlights include: Artificial Intelligence in treating and diagnosing schizophrenia An analysis of ML’s and DL’s financial effect on healthcare An XGBoost-based classification method for breast cancer classification Using ML to predict squamous diseases ML and DL applications in genomics and proteomics Applying ML and DL to biological data

Full Product Details

Author:   Faheem Masoodi ,  Mohammad Quasim ,  Syed Bukhari ,  Sarvottam Dixit
Publisher:   Taylor & Francis Ltd
Imprint:   Auerbach
Weight:   0.420kg
ISBN:  

9781032214375


ISBN 10:   1032214376
Pages:   200
Publication Date:   13 March 2023
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   In Print   Availability explained
This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us.

Table of Contents

Reviews

Author Information

Dr. Faheem Syeed Masoodi is Assistant Professor in the Department of Computer Science, University of Kashmir, India. Dr. Mohammad Tabrez Quasim is Assistant Professor at University of Bisha, Saudi Arabia. Dr. Syed Nisar Hussain Bukhari is a Scientist-C at the National Institute of Electronics and Information Technology (NIELIT) J&K, Srinagar, India. Prof. Dr. Sarvottam Dixit holds the post of Advisor to The Chairperson, Mewar University, Chittorgarh, India. Dr. Shadab Alam is currently Assistant Professor in the Department of Computer Science, Jazan University, Jazan, Saudi Arabia.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

lgn

al

Shopping Cart
Your cart is empty
Shopping cart
Mailing List