Anti-Fraud Engineering for Digital Finance: Behavioral Modeling Paradigm

Author:   Cheng Wang
Publisher:   Springer Verlag, Singapore
Edition:   1st ed. 2023
ISBN:  

9789819952564


Pages:   207
Publication Date:   05 December 2023
Format:   Hardback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $362.22 Quantity:  
Add to Cart

Share |

Anti-Fraud Engineering for Digital Finance: Behavioral Modeling Paradigm


Add your own review!

Overview

This book offers an introduction to the topic of anti-fraud in digital finance based on the behavioral modeling paradigm. It deals with the insufficiency and low-quality of behavior data and presents a unified perspective to combine technology, scenarios, and data for better anti-fraud performance. The goal of this book is to provide a non-intrusive second security line, rather than replaced with existing solutions, for anti-fraud in digital finance. By studying common weaknesses in typical fields, it can support the behavioral modeling paradigm across a wide array of applications. It covers the latest theoretical and experimental progress and offers important information that is just as relevant for researchers as for professionals.

Full Product Details

Author:   Cheng Wang
Publisher:   Springer Verlag, Singapore
Imprint:   Springer Verlag, Singapore
Edition:   1st ed. 2023
Weight:   0.534kg
ISBN:  

9789819952564


ISBN 10:   9819952565
Pages:   207
Publication Date:   05 December 2023
Audience:   College/higher education ,  Professional and scholarly ,  Postgraduate, Research & Scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Overview of Digital Finance Anti Fraud Vertical Association Modeling: Latent Interaction Modeling.- Horizontal Association Modeling: Deep Relation Modeling.- Explicable Integration Techniques: Relative Temporal Position Taxonomy.- Multidimensional Behavior Fusion: Joint Probabilistic Generative Modeling.- Knowledge Oriented Strategies: Dedicated Rule Engine.- Enhancing Association Utility: Dedicated Knowledge Graph.- Associations Dynamic Evolution: Evolving Graph Transformer.

Reviews

Author Information

Cheng Wang received the M.S. degree from the Department of Applied Mathematics, Tongji University, in 2006 and the Ph.D. degree from the Department of Computer Science, Tongji University, in 2011. He is currently Professor with the Department of Computer Science, Tongji University. His research interests include cyberspace security and intelligent information services.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

lgn

al

Shopping Cart
Your cart is empty
Shopping cart
Mailing List