An Introduction to the Theory of the Riemann Zeta-Function

Author:   S. J. Patterson (Georg-August-Universität, Göttingen, Germany)
Publisher:   Cambridge University Press
Volume:   14
ISBN:  

9780511623707


Publication Date:   05 August 2012
Format:   Undefined
Availability:   In stock   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Our Price $594.00 Quantity:  
Add to Cart

Share |

An Introduction to the Theory of the Riemann Zeta-Function


Add your own review!

Overview

This is a modern introduction to the analytic techniques used in the investigation of zeta functions, through the example of the Riemann zeta function. Riemann introduced this function in connection with his study of prime numbers and from this has developed the subject of analytic number theory. Since then many other classes of 'zeta function' have been introduced and they are now some of the most intensively studied objects in number theory. Professor Patterson has emphasised central ideas of broad application, avoiding technical results and the customary function-theoretic approach. Thus, graduate students and non-specialists will find this an up-to-date and accessible introduction, especially for the purposes of algebraic number theory. There are many exercises included throughout, designed to encourage active learning.

Full Product Details

Author:   S. J. Patterson (Georg-August-Universität, Göttingen, Germany)
Publisher:   Cambridge University Press
Imprint:   Cambridge University Press (Virtual Publishing)
Volume:   14
ISBN:  

9780511623707


ISBN 10:   0511623704
Publication Date:   05 August 2012
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Undefined
Publisher's Status:   Active
Availability:   In stock   Availability explained
We have confirmation that this item is in stock with the supplier. It will be ordered in for you and dispatched immediately.

Table of Contents

1. Historical introduction; 2. The Poisson summation formula and the functional equation; 3. The Hadamard product formula and 'explicit formulae' of prime number theory; 4. The zeros of the zeta function and the prime number theorem; 5. The Riemann hypothesis and the Lindelöf hypothesis; 6. The approximate functional equation; Appendix 1. Fourier theory; 2. The Mellin transform; 3. An estimate for certain integrals; 4. The gamma function; 5. Integral functions of finite order; 6. Borel–Caratheodory theorems; 7. Littlewood's theorem.

Reviews

'This is a clear and concise introduction to the zeta function that concentrates on the function-theoretical aspects rather than number theory ... The exercises are especially good, numerous and challenging. They extend the results of the text, or ask you to prove analogous results. Very Good Feature: Seven appendices that give most of the function-theoretical background you need to know to read this book. The Fourier Theory appendix is a gem: everything you need to know about the subject, including proofs, in 11 pages!' Allen Stenger, Mathematical Association of America Reviews


'This is a clear and concise introduction to the zeta function that concentrates on the function-theoretical aspects rather than number theory … The exercises are especially good, numerous and challenging. They extend the results of the text, or ask you to prove analogous results. Very Good Feature: Seven appendices that give most of the function-theoretical background you need to know to read this book. The Fourier Theory appendix is a gem: everything you need to know about the subject, including proofs, in 11 pages!' Allen Stenger, Mathematical Association of America Reviews


Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

lgn

al

Shopping Cart
Your cart is empty
Shopping cart
Mailing List