|
|
|||
|
||||
OverviewAdvances in Solar Energy in its fourth year has almost become routine in identifying important fields that warrant comprehensive reports, in assembling its contents and in preparing the typeset version; the final r~sult is now in front of you for your judgement. In working with the authors to prepare attractive reviews, several of our referees and editors have helped with a great deal of their time and a wealth of suggestions and advice for further improvement. The subjects treated in the first four volumes covered many areas of the large field of solar energy conversion. The interested reader may anticipate missing subjects for following volumes or updates of earlier reviews in rapidly developing fields. As in earlier volumes, we invite your comments and suggestions for articles and authors who are eminently qualified to write such critical reviews. This Volume covers subjects in bioconversion, photovoltaics and, in three articles, subjects related to heat transfer to the ground. We hope to order the content of a Volume even more in the future, to give emphasis to a specific topic in solar energy conversion. We thereby try to indicate its different modes of application and to stimulate cross fertilization of related fields. My special thanks go to Ms. Sandra Pruitt and Ms. Patricia Porter-Revels for typesetting the manuscript in the Delaware Office, and to the University of Delaware for its support of the publications office. The accommodating help from Plenum Press and its production staff deserves our grateful acknowledgement. Full Product DetailsAuthor: Karl W. BoeerPublisher: Springer-Verlag New York Inc. Imprint: Springer-Verlag New York Inc. Edition: Softcover reprint of the original 1st ed. 1988 Volume: 4 ISBN: 9781461399476ISBN 10: 1461399475 Pages: 534 Publication Date: 14 May 1989 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of Contents1 Biomass for Fuel and Food-A Parallel Necessity.- 1.1 Section II - Biomass for Food.- 1.2 Introduction.- 1.2.1 Food Production Potential.- 1.2.2 Soil Erosion.- 1.2.3 Cultivating Marginal Land.- 1.3 Food Production.- 1.3.1 EEC (European Economic Community).- 1.3.2 USA.- 1.3.3 USSR.- 1.3.4 China.- 1.3.5 Arab Countries.- 1.3.6 India.- 1.3.7 Latin America.- 1.3.8 Africa.- 1.4 Cash Crops.- 1.4.1 Sugar.- 1.4.2 Cash Crops and Research Aid.- 1.5 Crop Yields.- 1.6 Food Distribution.- 1.7 World Food Production.- 1.8 Malnutrition.- 1.8.1 Poverty, Aid, and Food.- 1.8.2 A Strategy for Food Production in Ethiopia.- 1.8.3 Aid.- 1.9 Agricultural Subsidies.- 1.10 Changing Diets.- 1.11 Section III - Biomass for Food and Fuel.- 1.12 Agroforestry.- 1.12.1 Water Flows and Nutrient Balance.- 1.13 Ethanol Production.- 1.13.1 Brazil.- 1.13.2 USA.- 1.13.3 EEC.- 1.14 Idled Lands and Surpluses.- 1.15 Short Rotation Forestry.- 1.16 Energy from Wastes and Residues.- 1.17 Agricultural Research Finance.- 1.18 Increasing the Yield of Rice.- 1.19 Crops for Industrial Products and Fuel.- 1.19.1 Guayule.- 1.19.2 Jojoba.- 1.19.3 Algae.- 1.20 Conclusions.- 1.21 Acknowledgement.- 1.22 References*.- 2 Lignin Hydrotreatment to Low-Molecular-Weight Compounds.- 2.1 Abstract.- 2.2 Introduction.- 2.3 Nature of Materials and Processes.- 2.3.1 Lignins and Their Preparation.- 2.3.2 Methods of Conversion of Lignins into Low-Molecular-Weight Phenolic Compounds.- 2.3.3 Summary of Relevant Petroleum Processing Technology Terminology.- 2.3.4 Why Methyl Aryl Ethers (MAE) From Lignins.- 2.4 Liquid Fuels and Phenolic Compounds From Lignins.- 2.4.1 Review of Hydrotreating of Lignins.- 2.4.1.1 References From Eastern Europe.- 2.4.1.1.1 General Hydrotreating Conditions.- 2.4.1.1.2 Effect of the Nature of the Lignin and of the Presence of Phenol.- 2.4.1.1.3 Other Inhibitors and Other Catalysts.- 2.4.1.1.4 Comparison Between Alkaline Hydrogenolysis and Alkaline Solvolysis in the Presence and Absence of Phenol.- 2.4.1.1.5 Other Work.- 2.4.1.1.6 Applications of Hydrotreated Acid Hydrolysis Lignins.- 2.4.1.2 References from North America, Western Europe and Asia.- 2.4.1.2.1 Summary of Hydrotreating Lignin and Wood in Organic/Aqueous Solvents Under Mild Reducing Conditions.- 2.4.1.2.2 Hydrotreating in Organic Solvents Under More Drastic Reducing Conditions.- 2.4.1.2.3 Hydrotreating of Sweetgum Lignin From Superconcentrated HCl Treatment of the Wood.- 2.4.1.2.4 Hydrogen-Donor Solvents.- 2.4.2 Review of Petrochemical/Coal Techniques Applied to Lignin Hydrotreating.- 2.4.2.1 Inventa A.-G. fur Forschung und Patentverwertung.- 2.4.2.2 Noguchi Institute of Japan and Crown-Zellerbach, Corp.- 2.4.2.3 Hydrocarbon Research, Inc. (HRI).- 2.4.2.3.1 Description of Patents.- 2.4.2.3.2 Economic Evaluations of the Lignol (TM) Process.- 2.4.2.3.3 Comparison of Hydrocracking/Hydrodealkylation With Fluidized-Bed Pyrolysis.- 2.4.2.4 Other Processes - Lignin as Catalyst for Coal or Oil Residue Hydroprocessing.- 2.4.3 Review of Selected Model Compound Hydrotreating.- 2.4.3.1 Thermolysis.- 2.4.3.2 Comparison of Thermal and Catalytic Hydrotreatments.- 2.4.3.3 Catalytic Hydrocrackmg.- 2.4.3.4 Catalytic Hydrocrackmg Studies by Other Researchers.- 2.4.4 Summary and Recommendations for Future R&D.- 2.4.4.1 Reactor Design.- 2.4.4.2 Solvent/Vehicle.- 2.4.4.3 Catalysts.- 2.4.4.4 Type of Lignin/Product Yields 1/.- 2.5 References.- 3 Polycrystalline II-IV-Related Thin Film Solar Cells.- 3.1 Historical Development.- 3.2 General Aspects of II-IV-Related Thin Film Solar Cells.- 3.2.1 Properties of Thin Polycrystalline Films.- 3.2.1.1 Polycrystallinity and Texture.- 3.2.1.2 Grain Boundary Model.- 3.2.2 Carrier Generation and Collection in Thin Film Solar Cells.- 3.2.2.1 Optical Absorption and Generation of Photocarriers.- 3.2.2.2 Recombination Losses.- 3.2.2.3 Carrier Transport and Collection.- 3.2.3 Heterojunction Thin Film Solar Cells.- 3.2.3.1 Heterojunction Models.- 3.2.3.2 Carrier Transport in Heterojunctions.- 3.2.3.3 Solar Cells Based on Heterojunctions.- 3.2.3.4 Effects of Polycrystallinity on Heterojunction Solar Cells.- 3.2.4 Tandem Structures.- 3.2.5 Materials for Thin Film Solar Cells.- 3.3 Thin Film Technology.- 3.3.1 Vacuum Evaporation.- 3.3.2 Quasi-equilibrium Deposition Methods.- 3.3.3 Plasma and Ion Assisted Techniques.- 3.3.3.1 Sputtering.- 3.3.3.2 Plasma Assisted Reactive Evaporation.- 3.3.3.3 Ionized Cluster Beam Deposition (ICB).- 3.3.4 Spray Deposition.- 3.3.5 Chemical Deposition From Solution.- 3.3.6 Replacement Reactions.- 3.3.7 Chemical Methods.- 3.3.8 Sintering.- 3.4 CuxS-CdS Thin Film Solar Cells.- 3.4.1 Material Properties.- 3.4.1.1 CdS-layers.- 3.4.1.2 CuxS-layers.- 3.4.2 Technology.- 3.4.2.1 Contacting Materials and Techniques.- 3.4.2.2 Production of the CdS-layer.- 3.4.2.3 Production of the CuxS-layer.- 3.4.2.4 Post-fabrication Treatments.- 3.4.2.5 Solar Cell and Module Technologies.- 3.4.3 Morphology and Crystallographic Structure of CuxSCdS Thin Film Heterojunctions.- 3.4.4 Photovoltaic Properties of CuxS-CdS Thin Film Solar Cells.- 3.4.5 Theoretical Model.- 3.4.6 Degradation Mechanisms.- 3.4.7 Present Situation.- 3.5 Chalcopyrite Thin Film Solar Cells.- 3.5.1 CuInSe2 Solar Cells.- 3.5.1.1 Material Properties.- 3.5.1.2 Deposition Methods.- 3.5.2 CuGaSe2 Solar Cells.- 3.5.2.1 Material Properties.- 3.5.2.2 Deposition Methods.- 3.5.2.3 Heterojunctions of CuGaSe2-(Zn,Cd)S.- 3.6 CdTe-based Thin Film Solar Cells.- 3.6.1 Properties of CdTe.- 3.6.2 Window Materials.- 3.6.3 Short Review of Single Crystal CdTe Solar Cells.- 3.6.4 Polycrystalline Thin Film Solar Cells.- 3.6.5 Problems of Doping and Contacting.- 3.7 Other Compound Semiconductor Cells.- 3.7.1 CdSe.- 3.7.2 CuO2.- 3.7.3 CdO/Se.- 3.7.4 WSe2-CdS.- 3.7.5 InSe-ITO.- 3.7.6 CrTe-(Zn,Cd)S.- 3.8 Tandem Structures.- 3.9 Summary and Conclusions.- 3.10 Acknowledgement.- 3.11 References.- 4 Design Methods for Earth-Contact Heat Transfer.- 4.1 Abstract.- 4.2 Introduction.- 4.3 History of Earth-Contact Calculations and.- Measurements.- 4.4 The Building-to-Ground Heat Transfer Problem.- 4.5 Analytic Solutions and Physical Characteristics of Earth-Contact Heat Transfer.- 4.5.1 Steady-State Solutions.- 4.5.2 Dynamic Solutions.- 4.5.2.1 unperturbed Ground.- 4.5.2.2 Slab-on-Grade.- 4.5.2.3 Basements.- 4.6 Numerical Methods/Simulation Programs.- 4.6.1 Numerical Simulations of Earth-Contact Heat Transfer.- 4.6.2 Modelling Combined Heat/Moisture Transfer.- 4.6.3 Earth-Contact Heat Transfer in Building Energy Computer Programs.- 4.7 Design Methods.- 4.7.1 Commonly-Used Methods for Basement and Slab-on-Grade Configurations.- 4.7.1.1 Wang/ASHRAE Method for Slab-on-Grade.- 4.7.1.2 ASHRAE Method for Basements.- 4.7.1.3 Mitalas Method.- 4.7.1.4 Shipp Method.- 4.7.2 Other Basement and Slab-on-Grade Methods.- 4.7.2.1 Yard/Morton-Gibson/Mitchell Method.- 4.7.2.2 ITPE Method.- 4.7.2.3 Kusuda Method.- 4.7.2.4 Decremented Average Ground Temperature Method.- 4.7.2.5 Swinton-Platts Method.- 4.7.2.6 Crawl Space Methods.- 4.7.3 Validation of Design Methods.- 4.7.3.1 Slab-on-Grade Validation Studies.- 4.7.3.2 Basement Validation Studies.- 4.7.4 Summary Comparison of Design Method Capabilities.- 4.8 Conclusions.- 4.9 Acknowledgement.- 4.10 References.- 5 The Status and Potential of Central Solar Heating Plants with Seasonal Storage: An International Report.- 5.1 Abstract.- 5.2 Introduction.- 5.2.1 The Concept and Supporting Rationale.- 5.2.2 Benefits of Central Solar Heating Plants with Seasonal Storage (CSH-pss).- 5.2.3 Historical Background.- 5.3 Major Projects and Studies.- 5.3.1 Austria.- 5.3.2 Canada.- 5.3.3 Denmark.- 5.3.4 Finland.- 5.3.5 France.- 5.3.6 Germany.- 5.3.7 Italy.- 5.3.8 Japan.- 5.3.9 The Netherlands.- 5.3.10 Poland.- 5.3.11 Sweden.- 5.3.12 Switzerland.- 5.3.13 United States.- 5.3.13.1 United States CSHPSS Research and Development.- 5.3.13.2 United States Aquifer Thermal Energy Storage Program.- 5.3.14 IEA TASK VII.- 5.4 Current Status Summary.- 5.4.1 Analysis of Performance of Components and Systems.- 5.4.1.1 Modeling of Storage Sub-Systems.- 5.4.1.2 Modeling of Solar Collector Arrays.- 5.4.1.3 Modeling, Simulation and Optimization of CSHPSS Systems.- 5.4.2 System Configurations.- 5.4.3 The Heating Load Delivery System.- 5.4.4 Thermal Energy Storage Systems.- 5.4.5 Solar Collectors.- 5.4.6 Heat Pumps.- 5.4.7 Controls and Control Strategies.- 5.5 Future Prospects.- 5.5.1 The IEA Countries.- 5.5.2 The U.S.A.- 5.6 Implications.- 5.7 References.- 6 Salinity-Gradient Solar Ponds.- 6.1 Introduction.- 6.2 History.- 6.3 Basic Physical Processes.- 6.3.1 The Three Zone Configuration.- 6.3.2 Radiation Input and Transmission.- 6.3.3 Convective and Diffusive Transport.- 6.3.4 Internal Stability of the Gradient.- 6.3.5 Stationary Zone Interfaces.- 6.4 Present State of Pond Technology.- 6.4.1 Containment.- 6.4.2 Filling the Pond.- 6.4.3 Monitoring Pond Operation.- 6.4.4 Maintaining the Salinity Configuration.- 6.4.5 Water Quality.- 6.4.6 Heat Extraction.- 6.4.7 Site Requirements.- 6.5 Ponds Now Operating.- 6.6 Present and Potential Applications.- 6.6.1 Ponds Now in Practical Use.- 6.6.2 Promising Potential Applications.- 6.7 Problems and Hazards of Pond Operation.- 6.7.1 Pond Construction.- 6.7.2 Monitoring the Pond.- 6.7.3 Pond Operation.- 6.7.4 Environmental Hazards.- 6.8 Thermal Performance and Cost of Heat.- 6.8.1 Thermal Performance.- 6.8.2 Cost of Heat.- 6.9 For the Future.- 6.10 Acknowledgement.- 6.11 References.ReviewsAuthor InformationTab Content 6Author Website:Countries AvailableAll regions |