|
|
|||
|
||||
OverviewAdvances in Molten Salt Reactors: Developments, Challenges and Opportunities comprehensively reviews a variety of molten salt reactor designs, focusing on aspects of neutronics, thermal-hydraulics, chemistry, material and safety characteristics to give the reader a detailed understanding of each design's underlying dynamic and purpose. Editors Dr. Mark Ho, Professor Massimiliano Frantoni, and Professor Huan Heng Yeoh, along with their team of expert contributors, combine their experience and knowledge to analyze a variety of design options to ensure engineers are able to make well informed decisions for the most effective energy spectrum for their plants, including salt and material selection, instrumentation challenges and experimental capabilities. This book presents the rapid developments made in molten salt designs from investing countries such as China, the US, UK, Canada and considers the work of a variety of key pioneering companies. It will be particularly valuable to practicing and researching nuclear engineers and graduate students of advanced nuclear reactor development. Full Product DetailsAuthor: Mark Ho (Nuclear Analysis Section, Australian Nuclear Science and Technology Organisation, ANSTO) , Massimiliano Fratoni (University of California, Berkeley, CA, USA) , Guan Heng Yeoh (Mechanical Engineering (CFD), University of New South Wales, Sydney, Australian Nuclear Science and Technology Organisation, University of New South Wales, Australia)Publisher: Elsevier Science & Technology Imprint: Woodhead Publishing Ltd ISBN: 9780081026069ISBN 10: 0081026064 Pages: 600 Publication Date: 01 November 2020 Audience: Professional and scholarly , Professional & Vocational Format: Paperback Publisher's Status: Active Availability: In Print This item will be ordered in for you from one of our suppliers. Upon receipt, we will promptly dispatch it out to you. For in store availability, please contact us. Table of ContentsReviewsAuthor InformationDr. Ho has been working as a reactor thermal hydraulic specialist at ANSTO for 12 years. He has been tracking the evolution of different molten salt reactor concepts for some time. His interest was sparked when he attended the Thorium Energy Conference in Shanghai in 2012. With his colleagues at ANSTO, be wrote a molten salt reactor review paper in 2013 link1 and started recruiting PhD students to conduct research on the topic. Currently there are 3 PhD students, two of which are focusing at neutronic characteristics and one who is looking specifically at the thermo-hydraulic behaviour of the solid-fuel under the supervision of Professor Yeoh, liquid salt design that both SINAP and UCB are working on. Dr Ho also serves as a Vice President of the Australian Nuclear Association (ANA) which strongly lobbies for the development of nuclear power and has delivered talks on the topic of MSRs link2 and fast reactors link3. In the last few years, he has developed ties with UCB, MIT and SINAP, three institutes heavily involved with MSR developments. Prof. Fratoni's research interests are in advanced fuel cycles that maximize natural resource utilization and minimize nuclear waste enabling sustainable nuclear energy. His main focus is on the design and analysis of advanced reactors such as molten salt reactors, fast spectrum reactors, reduced-moderation boiling water reactors, and fluoride-cooled high-temperature reactors. Prof. Fratoni's group also develops computational methods to support reactor analysis, and in particular multi-physics modelling and uncertainty quantification. Additional research areas include accident tolerant fuel, nuclear fuel cycle analysis, geological repository/far-field criticality, and fusion blanket design. Guan Heng Yeoh is a professor at the School of Mechanical and Manufacturing Engineering, UNSW, and a principal research scientist at ANSTO. He is the founder and editor of the Journal of Computational Multiphase Flows and the group leader of Computational Thermal-Hydraulics of OPAL Research Reactor, ANSTO. He has approximately 250 publications including 10 books, 12 book chapters, 156 journal articles and 115 conference papers with an H-index of 33 and over 4490 citations. His research interests are computational fluid dynamics (CFD); numerical heat and mass transfer; turbulence modelling using Reynolds averaging and large eddy simulation; combustion, radiation heat transfer, soot formation and oxidation, and solid pyrolysis in fire engineering; fundamental studies in multiphase flows: free surface, gas-particle, liquid-solid (blood flow and nanoparticles), and gas-liquid (bubbly, slug/cap, churn-turbulent, and subcooled nucleate boiling flows); computational modelling of industrial systems of single-phase and multiphase flows. Tab Content 6Author Website:Countries AvailableAll regions |