Accelerated Lattice Boltzmann Model for Colloidal Suspensions: Rheology and Interface Morphology

Author:   Hassan Farhat ,  Joon Sang Lee ,  Sasidhar Kondaraju
Publisher:   Springer-Verlag New York Inc.
ISBN:  

9781489974013


Pages:   158
Publication Date:   12 April 2014
Format:   Hardback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $290.37 Quantity:  
Add to Cart

Share |

Accelerated Lattice Boltzmann Model for Colloidal Suspensions: Rheology and Interface Morphology


Add your own review!

Overview

Colloids are ubiquitous in the food, medical, cosmetics, polymers, water purification, and pharmaceutical industries. The thermal, mechanical, and storage properties of colloids are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a convenient and reliable tool for the study of colloids. Accelerated Lattice Boltzmann Model for Colloidal Suspensions introduce the main building-blocks for an improved lattice Boltzmann–based numerical tool designed for the study of colloidal rheology and interface morphology. This book also covers the migrating multi-block used to simulate single component, multi-component, multiphase, and single component multiphase flows and their validation by experimental, numerical, and analytical solutions. Among other topics discussed are the hybrid lattice Boltzmann method (LBM) for surfactant-covered droplets; biological suspensions such as blood; used in conjunction with the suppression of coalescence for investigating the rheology of colloids and microvasculature blood flow. The presented LBM model provides a flexible numerical platform consisting of various modules that could be used separately or in combination for the study of a variety of colloids and biological flow deformation problems.

Full Product Details

Author:   Hassan Farhat ,  Joon Sang Lee ,  Sasidhar Kondaraju
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Dimensions:   Width: 15.50cm , Height: 1.10cm , Length: 23.50cm
Weight:   4.094kg
ISBN:  

9781489974013


ISBN 10:   1489974016
Pages:   158
Publication Date:   12 April 2014
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Hardback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

Preface.- 1. Introduction.- 2. Overview of Related Studies.- 3. Accelerated Lattice Boltzmann Method.- 4. Hybrid LBM for Surfactant-Covered Droplets.- 5. Suppressing the Coalescence in the LBM: Colloids Rheology.- 6. Non-Uniform Interfacial Tension LBM for RBC Modeling.- Appendix.- References.- Index.

Reviews

Author Information

Dr. Hassan Farhat received his M.S. in Mechanical Engineering from the Higher Institute of Mechanical and Electrical Engineering, Varna, Bulgaria. He finished a second M.S. and Ph.D. in Mechanical Engineering from Wayne State University, Detroit, Michigan, USA. During his Ph.D., he worked on numerical simulations of multiphase and multicomponent fluids as a platform for the study of Colloidal suspensions using the lattice Boltzmann method (LBM). He is currently working as Engineering Specialist in the automotive industry and part time faculty at Wayne State University. Dr. Joon Sang Lee received his B.S., M.S. and Ph.D. in Mechanical Engineering from Iowa State University. During his Ph.D. he worked on large eddy simulation of turbulent flows with heat transfer. Before he joined the School of Mechanical Engineering at Yonsei University, South Korea as a professor he was Assistant Professor of Mechanical Engineering at Wayne State University, Detroit, Michigan, USA. His research interests include Computational Fluid Dynamics (CFD), complex flows and biological (rheological) flows. Since 2004 he has published more than 40 journal articles collaborating with National Institute of Standard and Technology (NIST), U.S. Army Research Laboratory, Center for Ocean Land Atmosphere Studies, George Mason University and University of Maryland. Dr. Sasidhar Kondaraju received his B.E. in Mechanical Engineering from Osmania University, Hyderabad with distinction. He finished his M.S. and Ph.D. in Mechanical Engineering from Wayne State University, Detroit, Michigan, USA. During his Ph.D., he worked on numerical simulations of nano-particles suspended in fluid medium to observe their effect on heat transfer enhancement in nanofluids. After finishing his Ph.D., he worked for one year as a research associate at the University of Arizona, Tucson, Arizona, USA, and then as a research professor in Yonsei University, Seoul, South Korea fortwo years. Presently he is an INSPIRE faculty at IIT Delhi.

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

Aorrng

Shopping Cart
Your cart is empty
Shopping cart
Mailing List