A Formal Approach to Hardware Design

Author:   Jørgen Staunstrup
Publisher:   Springer-Verlag New York Inc.
Edition:   Softcover reprint of the original 1st ed. 1994
Volume:   253
ISBN:  

9781461361930


Pages:   232
Publication Date:   09 October 2012
Format:   Paperback
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Our Price $448.77 Quantity:  
Add to Cart

Share |

A Formal Approach to Hardware Design


Add your own review!

Overview

A Formal Approach to Hardware Design discusses designing computations to be realised by application specific hardware. It introduces a formal design approach based on a high-level design language called Synchronized Transitions. The models created using Synchronized Transitions enable the designer to perform different kinds of analysis and verification based on descriptions in a single language. It is, for example, possible to use exactly the same design description both for mechanically supported verification and synthesis. Synchronized Transitions is supported by a collection of public domain CAD tools. These tools can be used with the book in presenting a course on the subject. A Formal Approach to Hardware Design illustrates the benefits to be gained from adopting such techniques, but it does so without assuming prior knowledge of formal design methods. The book is thus not only an excellent reference, it is also suitable for use by students and practitioners.

Full Product Details

Author:   Jørgen Staunstrup
Publisher:   Springer-Verlag New York Inc.
Imprint:   Springer-Verlag New York Inc.
Edition:   Softcover reprint of the original 1st ed. 1994
Volume:   253
Dimensions:   Width: 16.00cm , Height: 1.30cm , Length: 24.00cm
Weight:   0.409kg
ISBN:  

9781461361930


ISBN 10:   1461361931
Pages:   232
Publication Date:   09 October 2012
Audience:   Professional and scholarly ,  Professional & Vocational
Format:   Paperback
Publisher's Status:   Active
Availability:   Manufactured on demand   Availability explained
We will order this item for you from a manufactured on demand supplier.

Table of Contents

1 Formal Design Methods.- 1.1 Why Use Formal Methods?.- 1.2 Models of Integrated Circuits.- 1.3 Synchronized Transitions.- 1.4 Background.- 2 DESIGNING WITH TRANSITIONS.- 2.1 Computational Model.- 2.2 States.- 2.3 Transitions.- 2.4 Arrays and Quantification.- 2.5 Fixed Points.- 2.6 Statics.- 2.7 Named Transitions.- 2.8 Cells.- 2.9 Conditional Instantiation.- 2.10 Restricting State Variables.- 2.11 Other Constructs.- 2.12 Background.- 2.13 Exercises.- 3 Formal Verification.- 3.1 Invariants and Protocols.- 3.2 Verification of Invariants and Protocols.- 3.3 Mechanical Verification.- 3.4 Verification of Modular Designs.- 3.5 Background.- 3.6 Exercises.- 4 Synchronous Designs.- 4.1 The Synchronous Combinator.- 4.2 Verification of Synchronous Designs.- 4.3 A Fast Adder.- 4.4 Background.- 4.5 Exercises.- 5 Synchronous Realizations.- 5.1 Two-phase Realizations.- 5.2 Timing Estimation.- 5.3 Asynchronous Designs.- 5.4 Implementation Conditions.- 5.5 Background.- 5.6 Exercises.- 6 Refinement.- 6.1 Abstraction Functions.- 6.2 The Weak Refinement Condition.- 6.3 Mechanization.- 6.4 Interface Refinement.- 6.5 Background.- 6.6 Exercises.- 7 Self-Timed Circuits.- 7.1 Classification.- 7.2 Models of Self-timed Circuits.- 7.3 Speed-independence.- 7.4 Hierarchical Designs.- 7.5 Delay-insensitivity.- 7.6 Background.- 7.7 Exercises.- 8 Towards Larger Designs.- 8.1 Combining Asynchronous and Synchronous Computations.- 8.2 Codesign.- 8.3 Background.- 9 EPILOG.- A Synchronized Transitions Report.- References.

Reviews

Author Information

Tab Content 6

Author Website:  

Customer Reviews

Recent Reviews

No review item found!

Add your own review!

Countries Available

All regions
Latest Reading Guide

lgn

al

Shopping Cart
Your cart is empty
Shopping cart
Mailing List